A Baldwin DT6-6-2000 in HO – Brass Additions Part 13

Over the last two weeks, I’ve been working on the brass Additions to accompany the 3D printed parts of the HO Baldwin DT6-6-2000 and I’ve just finished them, so this week I’ll share with you how they look on their etched fret and where they go on the model.

The fret will be etched from 0.5mm (0.0196″) brass with a lot of the finer details reduced to 0.25mm (0.0098″).  The 0.5mm was selected as it’ll make the handrails roughly 44mm wide at the scale of 1:1, which is ideal.

The main four handrails are in the top left of the fret.  The shell has 3D printed mounting holes and locating marks to ensure these are installed at the right level.  In the top right are the two end handrails which again fit into 3D printed holes in the shell.

Below the end handrails are the sun shades or visors which slide into sloping holes in the shell.  Not all the DT6-6-2000 locomotives had these so I’ll offer both a shell with mounting holes and one without. Further down the etch are all the grab irons and the tiny windscreen wipers.  Again, all of these parts fit into 3D printed holes in the shell.  Some of the grab irons have tiny half-etched marks on the rear, allowing them to be bent at 90° in the right place.

Another part which will only be used on Pennsylvania Railroad versions are the antenna for the Pennsy train phone.  Again, a different shell option will be offered with the slots in the roof for the antenna to drop into.

With all the parts listed so far, the shell will look like this with the exception of the grills, which I’ll come to later.

At the bottom of the etch fret are 16 parts that form the window boxes which were found on several locomotives, such as the Minneapolis, Northfield, and Southern Railway’s No 21, and later Elgin, Joliet, and Eastern Railway models.

The etched parts form the sill, roof, and sides and I’ve allowed space for glazing to be fitted, just like the other windows in the loco.  Because the brass parts slide together, I’ve designed them so the inner two windows can be opened, just like the real loco.

The fixing for the brass window box is different, and the original window is removed, so this will be a fourth option that I’ll make available.

The last etch part I’d been planning was the grill mesh on the front of the nose. To get such a tight mesh it would’ve needed to be etched on a thinner sheet of brass.

A 0.2mm (0.0078″) sheet with half etching would’ve given this effect shown below.

Up til now I thought I’d solved the problem of the mesh design. However, upon doing some more research I found this really high-quality image of MN&S No 21 taken by Mike Roth on Flicker.  You can see the original here.

Zooming in on the picture, which I haven’t been able to do this closely on all the old photos I have, I can now see it’s not a grill mesh at all but an actual radiator.

With my original N scale version, even though I thought it was a grill, I modeled it as a flat surface recessed into the shell.  Once painted, it looked great.  So I think the same thing will happen here and the etched mesh will be removed.  My test print has the hole for the mesh but that can easily be filled with plastic card.

These etched frets are much bigger than my previous ones, not just because they are HO, but there’s more on them so they’ll be more expensive. The tools are the expensive part, and can’t be changed, that’s why I put the parts for different versions on one fret as it would cost too much to make several different ones. The price will be £10 GBP and I’ll be looking for some pre-orders to help cover the cost of getting the etch tool made. If you’d like to be one of those pre-orders please drop me an email at jamestrainparts@yahoo.co.uk or get in touch via the contacts page.

Once I get the first set I can test fit all the parts, make any adjustments to the 3D model, and then make all the different versions available.  The brass etches for the Baldwin RT-624 will be different because the handrails and end rails are a different shape.  But I’ll come to that later when I convert the DT6-6-2000 3D model into the RT-624.